Research Output
Analysis of colliding index on impact behavior of RC columns under repeated impact loading
  This paper presents an investigation into the failure of RC columns under impact loadings. A numerical simulation of 19 identical RC columns subjected to single and repeated impact loadings was performed. A free-falling hammer was dropped at midspan with the same total kinetic energy input but varying mass and momentum. The specimens under the repeated impact test were struck two times at the same location. The colliding index, defined as the impact energy-momentum ratio, was proposed to explain the different impact responses under equal-energy impacts. The increase of colliding index from low to high indicates the transition of the impact response from static to dynamic and failure mode from flexure to shear. This phenomenon was more evident when the column had a greater axial load and was impacted with a high colliding index. The existence of the axial load had an inhibitory effect on the crack development and increased the shear resistance. The second impact changes the failure mode from flexural to brittle shear as found in the specimen with 20% axial load subjected to high a colliding index. Moreover, a deflection prediction equation based on the impact energy and force was limited to the low colliding index impact

  • Type:

    Article

  • Date:

    21 July 2022

  • Publication Status:

    Published

  • DOI:

    10.12989/cac.2022.30.1.019

  • ISSN:

    1598-8198

  • Funders:

    British Council

Citation

Tantrapongsaton, W., Hansapinyo, C., Wongmatar, P., Limkatanyu, S., Zhang, H., & Charatpangoon, B. (2022). Analysis of colliding index on impact behavior of RC columns under repeated impact loading. Computers and Concrete, 30(1), 19-32. https://doi.org/10.12989/cac.2022.30.1.019

Authors

Monthly Views:

Linked Projects

Available Documents