INSPIRING FUTURES

Comparison of human and machine recognition of everyday human actions.

Jones, Trevor, Lawson, Shaun, Benyon, David and Armitage, Alistair (2007) Comparison of human and machine recognition of everyday human actions. In: Digital Human Modeling. Lecture Notes in Computer Science, 4561 . Springer Berlin / Heidelberg, pp. 120-129. ISBN 978-3-540-73318-8

[img] PDF
Restricted to Registered users only
Available under License Creative Commons Attribution Non-commercial.

Download (239kB) | Request a copy

    Abstract/Description

    The research presented here makes a contribution to the understanding of the recognition of biological motion by comparing human recognition of a set of everyday gestures and motions with machine interpretation of the same dataset. Our reasoning is that analysis of any differences and/or correlations between the two could reveal insights into how humans themselves perceive motion and hint at the most important cues that artificial classifiers should be using to perform such a task. We captured biological motion data from human participants engaged in a number of everyday activities, such as walking, running and waving, and then built two artificial classifiers (a Finite State Machine and a multi-layer perceptron artificial neural network, ANN) which were capable of discriminating between activities. We then compared the accuracy of these classifiers with the abilities of a group of human observers to interpret the same activities when they were presented as moving light displays (MLDs). Our results suggest that machine recognition with ANNs is not only comparable to human levels of recognition but can exceed it in some instances.

    Item Type: Book Section
    ISBN: 978-3-540-73318-8
    Electronic ISBN: 978-3-540-73321-8
    Additional Information: publisher's link: http://www.springerlink.com/content/44t0358x0681183r/
    Uncontrolled Keywords: Neural network; finite state machine; moving light display; human biological motion;
    University Divisions/Research Centres: Faculty of Engineering, Computing and Creative Industries > School of Computing
    Dewey Decimal Subjects: 000 Computer science, information & general works > 000 Computer science, knowledge & systems > 004 Data processing & computer science
    Library of Congress Subjects: Q Science > QA Mathematics > QA75 Electronic computers. Computer science
    Item ID: 3755
    Depositing User: Computing Research
    Date Deposited: 29 Jun 2010 09:38
    Last Modified: 12 Dec 2013 11:23
    URI: http://researchrepository.napier.ac.uk/id/eprint/3755

    Actions (login required)

    View Item

    Document Downloads

    More statistics for this item...

    Edinburgh Napier University is a registered Scottish charity. Registration number SC018373