Time-series Explorer: An Animated Information Visualisation for Microarray Time-course Data

Craig, Paul, Kennedy, Jessie and Cumming, Andrew (2005) Time-series Explorer: An Animated Information Visualisation for Microarray Time-course Data. BMC Bioinformatics 2005, 6 (3). P8.

PDF (Text of Poster Presentation)
Available under License Creative Commons Attribution Non-commercial.

Download (133kB)


Microarray technologies are a relatively new development that allow biologists to monitor the activity of thousands of genes (normally around 8,000) in parallel across multiple stages of a biological process. While this new perspective on biological functioning is recognised as having the potential to have a significant impact on the diagnosis, treatment, and prevention of diseases, it is only through effective analysis of the data produced that biologists can begin to unlock this potential. A significant obstacle to achieving effective analysis of microarray time-course is the combined scale and complexity of the data. This inevitably makes it difficult to reveal certain significant patterns in the data. In particular it is less dominant patterns and, specifically, patterns that occur over smaller intervals of an experiment's overall time-frame that are more difficult to find. While existing techniques are capable of finding either unexpected patterns of activity over the majority of an experiment's time frame or expected patterns of activity over smaller intervals of the time frame, there are no techniques, or combination of techniques, that are suitable for finding unsuspected patterns of activity over smaller intervals. In order to overcome this limitation we have developed the Time-series Explorer, which specifically supports biologists in their attempts to reveal these types of pattern by allowing them to visualise their data controlling an animated interval scatter-plot linked to two complementary graph views. An evaluation, involving biologists working with real data, tested the extent of the tools desired functionality and assessed the technique's practical utility within the wider context of microarray time-course analysis. This proved the technique not only capable of revealing previously unsuspected temporal patterns but also, in certain cases, more appropriate for finding previously suspected patterns and patterns that occurred over the majority of the time-frame.

Item Type: Article
Uncontrolled Keywords: Biology; Microarrays; Data analysis; Computer programs; 'Time-series Explorer' program; Visualisation; Animated interval scatter-plots; Case study;
University Divisions/Research Centres: Faculty of Engineering, Computing and Creative Industries > School of Computing
Dewey Decimal Subjects: 000 Computer science, information & general works > 000 Computer science, knowledge & systems > 005 Computer programming, programs & data
500 Science > 570 Life sciences; biology > 570 Life sciences; biology
Library of Congress Subjects: Q Science > QH Natural history > QH301 Biology
Q Science > QA Mathematics > QA76 Computer software
Item ID: 3028
Depositing User: Computing Research
Date Deposited: 27 Oct 2009 17:06
Last Modified: 15 Oct 2014 10:24

Actions (login required)

View Item View Item


Downloads per month over past year

View more statistics

Edinburgh Napier University is a registered Scottish charity. Registration number SC018373